Cổng tri thức PTIT

Bài báo quốc tế

Kho tri thức

/

/

Learning Binary Codes for Fast Image Retrieval with Sparse Discriminant Analysis and Deep Autoencoders

Learning Binary Codes for Fast Image Retrieval with Sparse Discriminant Analysis and Deep Autoencoders

Đào Thị Thúy Quỳnh, An Hồng Sơn, Nguyễn Hữu Quỳnh, Cù Việt Dũng, Ngô Quốc Tạo

Image retrieval with relevant feedback on large and high-dimensional image databases is a challenging task. In this paper, we propose an image retrieval method, called BCFIR (Binary Codes for Fast Image Retrieval). BCFIR utilizes sparse discriminant analysis to select the most important original feature set, and solve the small class problem in the relevance feedback. Besides, to increase the retrieval performance on large-scale image databases, in addition to BCFIR mapping real-valued features to short binary codes, it also applies a bagging learning strategy to improve the ability general capabilities of autoencoders. In addition, our proposed method also takes advantage of both labeled and unlabeled samples to improve the retrieval precision. The experimental results on three databases demonstrate that the proposed method obtains competitive precision compared with other state-of-the-art image retrieval methods

Xuất bản trên:

Intelligent Data Analysis

Ngày đăng:

2023


Nhà xuất bản:

IOS Press

Địa điểm:


Từ khoá:

Content-based image retrieval (CBIR), sparse discriminant analysis, deep autoencoder, binary code

Bài báo liên quan

Vũ Hoài Nam, Phạm Văn Cường, Hoàng Mậu Trung, Trần Tiến Công
Nguyen Xuan Ha, Hoang Nhu Dong, Nguyen V Thang, Pham D An, Nguyen Duc Toan, Đặng Minh Tuấn
Nguyễn Thị Thu Hiên, Lê Thanh Thủy
Hoàng Văn Xiêm, Nguyễn Quang Sang, Bùi Thanh Hương, Vũ Hữu Tiến
Nguyễn Hồng Quân, Lê Trung Hiếu, Trần Trung Kiên, Hoàng Nhật Tân, Trần Thị Thanh Hải, Lê Thị Lan, Vũ Hải, Nguyễn Thanh Phương, Nguyễn Hữu Thanh, Phạm Văn Cường