Bài báo quốc tế
Kho tri thức
/
Bài báo quốc tế
/
GA4RF: An Effective Fall Detection System Through Optimizing Random Forest Hyperparameters Using Genetic Algorithm With Mobile Sensor Data
GA4RF: An Effective Fall Detection System Through Optimizing Random Forest Hyperparameters Using Genetic Algorithm With Mobile Sensor Data
Nguyễn Hà Nam
Xuất bản trên:
Ngày đăng:
2025
Nhà xuất bản:
IEEE Access
Địa điểm:
Từ khoá:
Fall detection system, genetic algorithm, random forest, hyperparameter optimization, imbalanced datasets, Matthews correlation coefficient, fitness function.
Bài báo liên quan
Leveraging RIS and QoS-Aware Transmission Rate for Energy-Efficient FSO Non-Terrestrial Networks
Lê Tùng Hoa3D-BPM simulation design of a compact 3-dB optical power splitter using a 2 × 2 RI-MMI coupler on silicon waveguide
Trần Thị Thanh ThủyDesign and demonstration of a high-performance, compact 2×2 optical switch based on optimized RI-MMI couplers for fast C-band switching in scalable photonic networks
Trần Thị Thanh ThủyDesign and Optimization of a Cascaded RI-MMI - Based 2×4 Quadrature Phase and Power Splitter with Integrated Thermo-Optic Phase Shifters
Trần Thị Thanh ThủyMinority-Class-Aware ECG Arrhythmia Detection Using Graph Attention-Driven Hybrid Feature Selection
Nguyễn Hữu Cầm